Lab Work 6. Data cleaning
Note: Here you will work with three different datasets: `log.csv`, `users.csv`, `sample.csv`. To know which dataset to use for a specific task, check the assignment (if it mentions `log_win`, then use `log.csv`, etc.).
1. Rename the columns in `log.csv` to:
· user_id
· time
· Bet
· win
2. In `sample` make all column names lowercase (for example, change 'Age' to 'age'), using a for loop.
3. Read the file into the variable `users`. Rename its columns to:
· user_id
· email
· geo
4. Create a new DataFrame `sample2` that contains only records of people younger than 30 years old.
5. Create a new DataFrame `log_win` that contains only records where the user won. Count how many such records there are and save it in the variable `win_count`.
6. Create a new DataFrame `sample2` containing only records of workers younger than 30 years old.
7. Use the `query` function to find records where the bet is less than 2000 and win is greater than 0. Save the result in a new DataFrame `log2`.
8. Find records where the city names contain the letter "o", and save them to `sample3`. Note: `contains` cannot work with missing values; use the parameter `na=False`.
9. Find records where the city names do not contain the letter "o", and save them to `sample4`. Remember to handle NaN with the `na` parameter.
10. Save to the variable `new_log` a DataFrame from which records with errors in the `user_id` field have been removed.
11. Using `apply` and a lambda function, increase the age in all records by 1 year and save the result in `sample2`. After this operation, `sample2` should contain the entire `sample` DataFrame.
12. Using `apply` and a lambda function, convert all letters in the `City` field to lowercase and save the result in `sample2`. You may need `str(s).lower()`. Note: when the column contains missing values, explicitly cast to `str` inside the lambda.
13. Write the function `profession_code` that receives a string and returns:
· 0 — if the input is "Рабочий" (Worker)
· 1 — if the input is "Менеджер" (Manager)
· 2 — in any other case
14.	Apply `profession_code` to replace values in the `Profession` field using `apply`. Save the resulting DataFrame as `sample2`. The function must be defined again before applying.
15. Write the function `age_category` that takes a number and returns:
"young"(молодой) — if age < 23
"middle"(средний) — if 23 <= age <= 35
"mature"(зрелый) — if age > 35

16. 	Apply `age_category` with `apply` to create a new column `Age_category` in `sample`. Use:
df['new_column'] = df.old_column.apply(func)

17.	 Transform the `user_id` field in `log` to keep only the user identifier. For example, change "Запись пользователя № — user_974" to "user_974".
18. Replace records with errors in `user_id` with an empty string "". Do this using `apply` and a custom function. Save the result back to `log`.
19. Load `log.csv` into `log`. Remove the opening square bracket from the first entry in the `time` column so that it has a standard format: set `t = log.time[0]` and then remove the "[" from that field. Save the cleaned result back to `log`.

